ON HARARY ENERGY OF GRAPHS

Anil D. Parmar
Department of Mathematics, Atmiya University, Rajkot - 360005, Gujarat, INDIA
E-mail : anil.parmar1604@gmail.com

(Received: Apr. 08, 2022 Accepted: Aug. 17, 2022 Published: Aug. 30, 2022)
Special Issue
Proceedings of National Conference on
"Emerging Trends in Discrete Mathematics, NCETDM - 2022"
Abstract: The Harary matrix of a connected graph G is defined as $H(G)=$ $\left[a_{i j}\right]_{n \times n}$, where $a_{i j}=\frac{1}{d\left(v_{i}, v_{j}\right)}$; for v_{i} and v_{j} are non adjacent in G and $a_{i i}=0$; for all $i, j=1,2,3, \cdots, n$. The Harary energy of G is the sum of the absolute values of the eigenvalues of Harary matrix of G. In this paper, the Harary characteristic polynomial of $K_{m, n}$ and Harary energy of some graphs are investigated.
Keywords and Phrases: Eigenvalue, Graph Polynomial, Graph Energy.
2020 Mathematics Subject Classification: 05C50, 05C31, 05C76.

1. Introduction and Preliminaries

Let G be a simple, undirected and connected graph with vertex set $V(G)=$ $\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{n}\right\}$. The distance between two vertices v_{i} and v_{j} is the length of shortest path between them; for all $1 \leq i, j \leq j$. The maximum distance between any pair of vertices is known as diameter of graph G. For standard terminology and notations in graph theory, rely upon West [14] while for any undefined term related to energy of graphs, refer to Gutman [6].
Definition 1.1. The m-Shadow graph, $D_{m}(G)$ of a connected graph G is constructed by taking m copies of G say $G_{1}, G_{2}, \ldots, G_{m}$. Then Join each vertex u in

